Physics Fourth Marking Period Review Sheet

Spring, Mr. Wicks

Chapter 14: Reflection

A. Characteristics of Light

- I can describe the regions of the electromagnetic spectrum and their relative order with wavelength or frequency in mind (radio waves, microwaves, infrared (IR) waves, visible light, ultraviolet (UV) light, X-rays, gamma rays).
- I understand that all electromagnetic waves move at the speed of light.
- I can calculate wavelength and frequency using the wave-speed equation $c = f\lambda$ where c = speed of light (3.00 x 10⁸ m/s), f = frequency in Hertz, and $\lambda =$ wavelength in meters.
- I can represent waves of light as rays in ray diagrams and illustrate where images form for mirrors (Chapter 14) and lenses (Chapter 15).
- I understand that brightness decreases by the square of the distance from the source.

B. Flat Mirrors

- I can describe the characteristics of flat mirrors.
 - Angle of incidence = angle of reflection
 - Object distance = image distance
 - Object height = image height
 - The image is always virtual, upright, and the same size as the object.
 - The image is reversed compared to the object.
- C. Curved Mirrors
 - I can compare and contrast the characteristics of concave and convex mirrors given in Table 1.
 - Using ray diagrams, I can distinguish between the six cases for a concave mirror to give the image characteristics shown in Table 2.
 - Using the instructions in Table 3, I can draw ray diagrams for mirrors showing the focal point, center of curvature, location of the object, location of the image, image size, and image orientation.
 - Using the mirror and magnification equations given in Table 4, I can calculate image distance, object distance, focal length, magnification, and image height.
 - Using Table 5, I can interpret the *signs* of optical quantities like focal length, f, image distance,

q, and magnification, M. Using Table 5, I can also interpret the *size* of the magnification, M.

• I understand that parabolic mirrors are superior to concave spherical mirrors. Parabolic mirrors eliminate spherical aberration by having the rays converge at a single point.

	Table 1: Curved Mirrors	
Quantity	Concave Mirror	Convex Mirror
Focal Length:	f is positive	f is negative
Number of Cases:	6 (See ray diagram handout)	1
Image is:		
• Real or Virtual?	The answers to these questions	Virtual
• Inverted or Upright?	depend on the case number in	Upright
• Larger, Smaller, or	the ray diagram handout.	Smaller than Object
Same Size as Object?		

	Table 2: Desc	ription of Cases 1-6	6 for a Concave Mir	ror
Case #	Object Position	Image Type	Image Orientation	Image Size Compared to Object
1	Object is at infinity:	Real	Inverted	Smaller (Focal Point)
2	<i>Object distance is greater than C:</i>	Real	Inverted	Smaller
3	<i>Object is at C:</i>	Real	Inverted	Same Size
4	<i>Object is between C and F:</i>	Real	Inverted	Larger
5	<i>Object is at F:</i>	•	for case 5 because pown in the correspon	•
6	<i>Object is between F and the lens:</i>	Virtual	Upright	Larger

Table	3: Drawing Ray Diagrams for M	Mirrors
Ray	Before Mirror	After Mirror
Parallel Ray (P-Ray):	Ray is parallel to principal axis	Ray passes through the focal point, F
Focal-Point Ray (F-Ray):	Ray passes through the focal point, F	Ray is parallel to the principal axis
Center of Curvature Ray (C- Ray):	Ray passes	through C

	Table 4: Equations for Mirror	rs
Calculation	Equation	Comments
Mirror Equation:	$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$	p = object distance, q = image distance, and f = focal length
Magnification:	$M = \frac{-q}{p} = \frac{h'}{h}$	M = magnification, h' = image height, and h = object height

Table 5: Interpre	ting Signs and Sizes for Various	Optical Quantities
Quantities		
Sign of focal length, f :	f is positive,	f is negative,
	Concave mirror or a Convex (converging) lens	Convex mirror or a Concave (diverging) lens
Sign of Image Distance, q:	<i>q</i> is positive, Real image	<i>q</i> is negative, Virtual image
Sign of Magnification, M :	<i>M</i> is positive, Upright image	<i>M</i> is negative, Inverted image
Size of Magnification, M :	M > 1, Image is larger than object	M < 1, Image is smaller than object

D. Color

- I can use the triangle diagram given during class to predict colors when various lights or various pigments are combined.
 - The primary colors for light are red, blue, and green.
 - Additive primary colors produce white light when combined.
 - The primary colors for pigments are yellow, magenta, and cyan.
 - Subtractive primary colors produce black pigment when combined.

E. Polarization

- I can describe three types of polarization
 - Transmission—ex. Polaroid sunglasses can remove the glare of light polarized perpendicular to the glasses.
 - Reflection—ex. light becomes polarized by reflecting off of a lake.
 - Scattering—ex. light becomes polarized by reflecting off of atmospheric gas molecules.
- I understand that when high quality polarized lenses are oriented perpendicular to each other, this blocks the light from passing through both lenses.

Chapter 15: Refraction

A. Refraction

- I understand that refraction is the bending of light as it travels from one medium into another.
- I can compare and contrast the two general cases for refraction shown in Table 6.
- I can use the Law of Refraction and Snell's Law, which are given in Table 7.
- When the index of refraction for the first medium is greater than the index of refraction for the second medium $(n_i > n_r)$, total internal reflection is possible (ex. fiber optic cables).
- I can calculate the critical angle at which total internal reflection occurs from the corresponding equation given in Table 7.

B. Curved Lenses

- I can compare and contrast the characteristics of concave and convex lenses given in Table 8.
- Using ray diagrams, I can distinguish between the six cases for a converging (double convex) lens to give the image characteristics shown in Table 9.
- Using the instructions in Table 10, I can draw ray diagrams for lenses showing the focal point F, 2F, the location of the object, location of the image, image size, and image orientation.
- Using the thin-lens and magnification equations given in Table 11, I can calculate image distance, object distance, focal length, magnification, and image height.
- Using Table 5, I can interpret the *signs* of optical quantities like focal length, *f*, image distance, *q*, and magnification, *M*. Using Table 5, I can also interpret the *size* of the magnification, *M*. The interpretation is the *same* for both mirrors and lenses.

	Table 6: Refraction	
Quantity	Case 1	Case 2
Sketch:		
	Ex. Ray passes from air into water or glass.	Ex. Ray passes from water or glass into air.
Index of Refraction, <i>n</i> :	$n_i < n_r$	$n_i > n_r$
Speed of Light, V:	$V_i > V_r$	$v_i < v_r$
Result:	Ray is bent <i>toward</i> the normal. $(\theta_i > \theta_r)$	Ray is bent <i>away from</i> the normal. $(\theta_i < \theta_r)$

	Table 7: Equations for Refraction	on
Calculation	Equation	Comments
Law of Refraction:	$n = \frac{c}{v}$	n = index of refraction, c = speed of light in a vacuum (3.00 x 10 ⁸ m/s), v = speed of light in the medium of interest
Snell's Law:	$n_i(\sin\theta_i) = n_r(\sin\theta_r)$	n_i = index of refraction for the first medium, θ_i = angle of incidence, n_r = index of refraction for the second medium, θ_r = angle of refraction
Critical Angle:	$\sin \theta_C = \frac{n_r}{n_i}$ for $n_i > n_r$	θ_{C} = critical angle at which total internal reflection begins to occur

	Table 8: Curved Lenses	
Quantity	Convex Lens	Concave Lens
Shape and Type of Lens:	Converging Lens	Diverging Lens
Focal Length:	f is positive	f is negative
Number of Cases:	6 (See ray diagram handout)	1
Image is: • Real or Virtual? • Inverted or Upright? • Larger, Smaller, or Same Size as Object?	The answers to these questions depend on the case number in the ray diagram handout.	Virtual Upright Smaller than Object

Case #	Object Position	Image Type	Image Orientation	Image Size Compared to Object
1	<i>Object is at infinity:</i>	Real	Inverted	Smaller (Focal Point)
2	<i>Object distance is greater than 2F:</i>	Real	Inverted	Smaller
3	<i>Object is at 2F:</i>	Real	Inverted	Same Size
4	<i>Object is between 2F and F:</i>	Real	Inverted	Larger
5	<i>Object is at F:</i>		s for case 5 because pown in the correspon	
6	<i>Object is between F and the lens:</i>	Virtual	Upright	Larger

Table	10: Drawing Ray Diagrams for	Lenses
Ray	Before Lens	After Lens
Parallel Ray (P-Ray):	Ray is parallel to principal axis	Ray passes through the focal point, F
Focal-Point Ray (F-Ray):	Ray passes through the focal point, F	Ray is parallel to the principal axis
Midpoint Ray (M-Ray):	Ray passes through the	e midpoint of the lens

	Table 11: Equations for Le	enses
Calculation	Equation	Comments
Thin-lens Equation:	$\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$	p = object distance, q = image distance, and f = focal length
Magnification:	$M = \frac{-q}{p} = \frac{h'}{h}$	M = magnification, h' = image height, and h = object height

- C. Other Optical Phenomena
 - I can give an example of atmospheric refraction—ex. refracted light can produce mirages.
 - I can give an example of dispersion—ex. rainbows are created by the dispersion of light in water droplets. Note that the sun has to be behind a person for the rainbow to be observed.
 - I can identify types of lens aberration:
 - Chromatic aberration—color fuzziness.
 - Spherical aberration—optical fuzziness.

Chapter 17: Electric Forces and Fields

- A. Electric Charge
 - I can describe types of charges
 - I can give examples of charge conservation
 - I understand charge quantization; $e = 1.60 \times 10^{-19} \text{ C}$; recall that you can use this as a conversion factor with units $1.60 \times 10^{-19} \text{ C/electron}$, for example.
 - I can give everyday examples of charge transfer:
 - 1. Charging through contact (walking across a carpet)
 - 2. Charging by induction (electroscope demonstrations, balloon demonstration)
 - I can distinguish between conductors, insulators, and semiconductors
- B. Electric Force
 - I can compare and contrast electric force with gravitational force of attraction:
 - 1. Both are field forces
 - 2. Both are inverse square laws; recall that $F_g = Gm_1m_2/r^2$ where $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
 - 3. Electric force is significantly stronger than gravitational force
 - 4. Electric force can be attractive or repulsive whereas gravitational force is only attractive.
 - I can calculate electric force using Coulomb's Law: $F_{electric} = k_c q_1 q_2/r^2$ where $k_c = 8.99 \times 10^9$ Nm²/C² = Coulomb Constant
- C. Electric Field
 - I understand that electric field strength depends on charge and distance
 - I understand that electric fields can be represented by electric field lines (analogous to lines representing altitude on a geographical contour map for hiking)
 - I can clearly describe why a person's hair stands on end when the person is insulated from the ground and he or she touches a van de Graaff generator. (Recall that a van de Graaff generator collects electric charge.)

Chapter 19: Current and Resistance

- A. Electric Current
 - I understand that current is the rate of charge movement, and I can calculate current using I = ΔQ/Δt where current, I, is in Amps (A), charge passing through a given area, ΔQ, is in Coulombs (C), and change in time, Δt, is in seconds (s).
 - I understand conventional current is defined in terms of positive charge movement.
 - I understand that drift velocity, which is the net velocity of charge carriers, is relatively small: 68 min. on average for an electron to travel 1.0 m.
 - I can compare and contrast two current sources:
 - 1. Batteries-change chemical energy into electrical energy
 - 2. Generators—change mechanical energy into electrical energy
 - I can describe two current types:
 - 1. Direct current (DC)
 - 2. Alternating current (AC)
- B. Resistance
 - I can explain how these four factors affect resistance:
 - 1. Length of conductor
 - 2. Cross-sectional area of conductor
 - 3. Conductor material
 - 4. Temperature
 - I am an expert at using Ohm's Law: $\Delta V = IR$, where potential difference, ΔV , is in Volts (V), current, I, is in Amps (A), and resistance, R, is in Ohms (Ω).
 - I can distinguish between ohmic and nonohmic materials:
 - 1. Ohmic materials have a constant resistance over a wide range of potential differences (ex. most metals)
 - 2. Nonohmic materials do not have a constant resistance over a wide range of potential differences. (ex. diodes, which are analogous to check valves in plumbing)
 - I understand that resistors can be used to control the amount of current in a conductor.
 - I understand that salt water and perspiration lower the body's resistance.
- C. Electric Power
 - I understand that electric power, P, is the rate at which electrical energy is converted to other forms of energy, and I can calculate power using $P = I\Delta V$ where power, P, is in Watts (W), current, I, is in Amps (A), and potential difference, ΔV , is in Volts (V).
 - By combining the power formula, $P = I\Delta V$, with Ohm's law, $\Delta V = IR$, I can derive two additional ways to calculate power: $P = I^2 R$ and $P = (\Delta V)^2 / R$.
 - I understand that the amount of heat and light given off by a light bulb is related to the electric power rating. Most light bulbs are labeled with a power rating in Watts.
 - By using a three-step method ((1) get power, (2) get kWh, (3) get cost), I can determine the electrical power cost to operate an electrical appliance for a given length of time.
 - I understand that electric companies measure energy consumed in kilowatt hours $(1 \text{ kWh} = 3.6 \text{ x } 10^6 \text{ J})$
 - I understand that electrical energy is transferred at high potential differences (high voltages) to minimize energy loss.

Chapter 20: Circuits and Circuit Elements

- A. Schematic Diagrams
 - I can read, understand, and draw simple schematic diagrams.
 - I can interpret the symbols for a wire, resistor, bulb, plug, battery, open and closed switch, and capacitor.
 - I can identify open circuits, closed circuits, and short circuits
 - I understand that short circuits occur when there is little or no resistance to the movement of charges; the increase in current may cause the wire to overheat and start a fire.
 - When a light bulb is screwed in, I understand that charges can enter through the base, move along the wire to the filament, and exit the bulb through the threads.
 - I understand that light bulbs emit light because the filament is a resistor, which converts some of its electrical energy to light energy and heat energy.
 - I understand that the electromotive force (emf) is the source of a circuit's potential difference (voltage) and electrical energy.
 - I understand that batteries have a small internal resistance, which is usually ignored in problem solving.
- B. Series and Parallel Circuits
 - I can compare and contrast series and parallel circuits using Table 12, and I can calculate equivalent resistance, R_{eq}, using the equations in Table 12.
 - I can use Ohm's law on a large scale to calculate information about an entire circuit: $\Delta V_{\text{battery}} = I_{\text{circuit}}R_{\text{eq}}$ where $\Delta V_{\text{battery}}$ is the voltage of the battery, I_{circuit} is the current in the circuit, and R_{eq} is the equivalent resistance.
 - I can use Ohm's law on a small scale to calculate information about a particular resistor: $\Delta V = IR$ where ΔV is the voltage for the resistor, I is the current through the resistor, and R is the resistance of the resistor.

Quantity	Series Circuit	Parallel Circuit	
Schematic Diagram:			
Current, I : (Amps, A)	$I = I_1 = I_2 = I_3 = \dots$	$I_{total} = I_1 + I_2 + I_3 + \dots$	
Potential Difference, ∆V: Voltage, V)	$V_{total} = V_1 + V_2 + V_3 + \dots$	$V = V_1 = V_2 = V_3 = \dots$	
Equivalent Resistance, R _{eq} : (Ohms, Ω)	$R_{eq} = R_1 + R_2 + R_3 + \dots$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$	

Equations Available on Physics Fourth Marking Period Test

$$c = f\lambda \qquad \qquad \frac{1}{p} + \frac{1}{q} = \frac{1}{f} \qquad \qquad M = \frac{-q}{p} = \frac{h'}{h}$$

$$n = \frac{c}{v} \qquad \qquad n_i(\sin\theta_i) = n_r(\sin\theta_r) \qquad \qquad \sin\theta_c = \frac{n_r}{n_i} \text{ for } n_i > n_r$$

$$c = 3.00 \ge 10^8 \text{ m/s} \qquad \qquad F_{Gravitational} = G \frac{m_1 m_2}{r^2} \qquad \qquad G = 6.67 \ge 10^{-11} \text{ Nm}^2/\text{kg}^2$$

$$F_{Electric} = k_c \frac{q_1 q_2}{r^2} \qquad \qquad k_c = 8.99 \ge 10^9 \text{ Nm}^2/\text{C}^2$$

$$e = 1.60 \ge 10^{-19} \text{ C} \qquad \qquad I = \frac{\Delta Q}{\Delta t} \qquad \qquad \Delta V = IR$$

$$R_{eq} = R_1 + R_2 + R_3 + \dots \qquad \qquad \frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots \qquad \Delta V_{Battery} = I_{Circuit} R_{eq}$$

$$P = I\Delta V \qquad \qquad P = I^2 R \qquad \qquad P = \frac{(\Delta V)^2}{R}$$

Cost calculations: (1) get power (2) get kilowatt-hours (3) get cost

- This list of equations will be provided on the test.
- You are not allowed to use note cards, review sheets, textbooks, or any other aids during the test.
- You may use a calculator. However, you are not allowed to use any other electronic devices (*i*-Pods, *i*-Phones, smart phones, netbooks, laptop computers etc.) until the last person is finished with the test.
- Calculator sharing is not allowed.
- It is to your advantage to check your work.
- All test materials including scratch paper must be returned at the end of the test.