Physics Fourth Marking Period Review Sheet

Spring, Mr. Wicks

Chapter 14: Reflection

A. Characteristics of Light

- I can describe the regions of the electromagnetic spectrum and their relative order with wavelength or frequency in mind (radio waves, microwaves, infrared (IR) waves, visible light, ultraviolet (UV) light, X-rays, gamma rays).
- I understand that all electromagnetic waves move at the speed of light.
- I can calculate wavelength and frequency using the wave-speed equation $c=f \lambda$ where $c=$ speed of light ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$), $f=$ frequency in Hertz, and $\lambda=$ wavelength in meters.
- I can represent waves of light as rays in ray diagrams and illustrate where images form for mirrors (Chapter 14) and lenses (Chapter 15).
- I understand that brightness decreases by the square of the distance from the source.
B. Flat Mirrors
- I can describe the characteristics of flat mirrors.
- Angle of incidence $=$ angle of reflection
- Object distance $=$ image distance
- Object height = image height
- The image is always virtual, upright, and the same size as the object.
- The image is reversed compared to the object.
C. Curved Mirrors
- I can compare and contrast the characteristics of concave and convex mirrors given in Table 1.
- Using ray diagrams, I can distinguish between the six cases for a concave mirror to give the image characteristics shown in Table 2.
- Using the instructions in Table 3, I can draw ray diagrams for mirrors showing the focal point, center of curvature, location of the object, location of the image, image size, and image orientation.
- Using the mirror and magnification equations given in Table 4, I can calculate image distance, object distance, focal length, magnification, and image height.
- Using Table 5, I can interpret the signs of optical quantities like focal length, f, image distance, q, and magnification, M. Using Table 5, I can also interpret the size of the magnification, M.
- I understand that parabolic mirrors are superior to concave spherical mirrors. Parabolic mirrors eliminate spherical aberration by having the rays converge at a single point.

Table 1: Curved Mirrors		
Quantity	Concave Mirror	Convex Mirror
Focal Length:	f is positive	f is negative
Number of Cases:	6 (See ray diagram handout)	
Image is: $\bullet \quad$ Real or Virtual? $\bullet \quad$ Inverted or Upright? \bullet Larger, Smaller, or Same Size as Object?	The answers to these questions depend on the case number in the ray diagram handout.	Virtual

Table 2: Description of Cases 1-6 for a Concave Mirror				
Case $\#$	Object Position	Image Type	Image Orientation	Image Size Compared to Object
$\mathbf{1}$	Object is at infinity:	Real	Inverted	Smaller (Focal Point)
$\mathbf{2}$	Object distance is greater than $\boldsymbol{C}:$	Real	Inverted	Smaller
$\mathbf{3}$	Object is at C:	Real	Inverted	Same Size
$\mathbf{4}$	Object is between C and F:	Real	Inverted	Larger
$\mathbf{5}$	Object is at F:	No image exists for case 5 because parallel rays cannot intersect as shown in the corresponding ray diagram.		
$\mathbf{6}$	Object is between \boldsymbol{F} and the lens:	Virtual	Upright	Larger

Table 3: Drawing Ray Diagrams for Mirrors		
Ray	Before Mirror	After Mirror
Parallel Ray (P-Ray):	Ray is parallel to principal axis	Ray passes through the focal point, F
Focal-Point Ray (F-Ray):	Ray passes through the focal point, F	Ray is parallel to the principal axis
Center of Curvature Ray (C- Ray):	Ray passes through C	

Table 4: Equations for Mirrors		
Calculation	Equation	Comments
Mirror Equation:	$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$	$p=$ object distance, $q=$ image distance, and $f=$ focal length
Magnification:	$M=\frac{-q}{p}=\frac{h^{\prime}}{h}$	$M=$ magnification, $h^{\prime}=$ image height, and $h=$ object height

Table 5: Interpreting Signs and Sizes for Various Optical Quantities

Quantities		
Sign of focal length, $f:$	f is positive, Concave mirror or a Convex (converging) lens	f is negative, Convex mirror or a Concave (diverging) lens
Sign of Image Distance, $q:$	q is positive, Real image	q is negative, Virtual image
Sign of Magnification, $M:$	M is positive, Upright image	M is negative, Inverted image
Size of Magnification, $M:$	$M>1$, Image is larger than object	$M<1$, Image is smaller than object

D. Color

- I can use the triangle diagram given during class to predict colors when various lights or various pigments are combined.
- The primary colors for light are red, blue, and green.
- Additive primary colors produce white light when combined.
- The primary colors for pigments are yellow, magenta, and cyan.
- Subtractive primary colors produce black pigment when combined.
E. Polarization
- I can describe three types of polarization
- Transmission-ex. Polaroid sunglasses can remove the glare of light polarized perpendicular to the glasses.
- Reflection-ex. light becomes polarized by reflecting off of a lake.
- Scattering-ex. light becomes polarized by reflecting off of atmospheric gas molecules.
- I understand that when high quality polarized lenses are oriented perpendicular to each other, this blocks the light from passing through both lenses.

Physics Fourth Marking Period Review Sheet, Page 4

Chapter 15: Refraction

A. Refraction

- I understand that refraction is the bending of light as it travels from one medium into another.
- I can compare and contrast the two general cases for refraction shown in Table 6.
- I can use the Law of Refraction and Snell's Law, which are given in Table 7.
- When the index of refraction for the first medium is greater than the index of refraction for the second medium ($n_{i}>n_{r}$), total internal reflection is possible (ex. fiber optic cables).
- I can calculate the critical angle at which total internal reflection occurs from the corresponding equation given in Table 7.
B. Curved Lenses
- I can compare and contrast the characteristics of concave and convex lenses given in Table 8.
- Using ray diagrams, I can distinguish between the six cases for a converging (double convex) lens to give the image characteristics shown in Table 9.
- Using the instructions in Table 10, I can draw ray diagrams for lenses showing the focal point F, 2 F , the location of the object, location of the image, image size, and image orientation.
- Using the thin-lens and magnification equations given in Table 11, I can calculate image distance, object distance, focal length, magnification, and image height.
- Using Table 5, I can interpret the signs of optical quantities like focal length, f, image distance, q, and magnification, M. Using Table 5, I can also interpret the size of the magnification, M. The interpretation is the same for both mirrors and lenses.

Quantity	Table 6: Refraction	
Sketch:	Case 1	Case 2
Index of Refraction, $n:$	Ex. Ray passes from air into water or glass.	Ex. Ray passes from water or glass into air.
Speed of Light, $v:$	$n_{i}<n_{r}$	$n_{i}>n_{r}$
Result:	$v_{i}>v_{r}$	$v_{i}<v_{r}$
	Ray is bent toward the normal. $\left(\theta_{i}>\theta_{r}\right)$	Ray is bent \boldsymbol{a} away from the normal. $\left(\theta_{i}<\theta_{r}\right)$

Table 7: Equations for Refraction		
Calculation	Equation	Comments
Law of Refraction:	$n=\frac{c}{v}$	$n=$ index of refraction, $c=$ speed of light in a vacuum ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$), $v=$ speed of light in the medium of interest
Snell's Law:	$n_{i}\left(\sin \theta_{i}\right)=n_{r}\left(\sin \theta_{r}\right)$	$n_{i}=$ index of refraction for the first medium, $\theta_{i}=$ angle of incidence, $n_{r}=$ index of refraction for the second medium, $\theta_{r}=$ angle of refraction
Critical Angle:	$\sin \theta_{C}=\frac{n_{r}}{n_{i}} \text { for } n_{i}>n_{r}$	$\theta_{C}=$ critical angle at which total internal reflection begins to occur

Table 8: Curved Lenses

Quantity	Convex Lens	Concave Lens
Shape and Type of Lens:	Converging Lens	Diverging Lens
Focal Length:	f is positive	f is negative
Number of Cases:	6 (See ray diagram handout)	1
Image is: $\bullet ~ R e a l ~ o r ~ V i r t u a l ? ~$ $\bullet ~ I n v e r t e d ~ o r ~ U p r i g h t ? ~$ $\bullet ~ L a r g e r, ~ S m a l l e r, ~ o r ~$ Same Size as Object?	The answers to these questions depend on the case number in the ray diagram handout.	Virtual Upright

Table 9: Description of Cases 1-6 for a Convex (Converging) Lens				
Case $\#$	Object Position	Image Type	Image Orientation	Image Size Compared to Object
$\mathbf{1}$	Object is at infinity:	Real	Inverted	Smaller (Focal Point)
$\mathbf{2}$	Object distance is greater than 2F:	Real	Inverted	Smaller
$\mathbf{3}$	Object is at 2F:	Real	Inverted	Same Size
$\mathbf{4}$	Object is between 2F and F:	Real	Inverted	Larger
$\mathbf{5}$	Object is at F:	No image exists for case 5 because parallel rays cannot intersect as shown in the corresponding ray diagram.		
$\mathbf{6}$	Object is between F and the lens:	Virtual	Upright	Larger

Table 10: Drawing Ray Diagrams for Lenses		
Ray	Before Lens	After Lens
Parallel Ray (P-Ray):	Ray is parallel to principal axis	Ray passes through the focal point, F
Focal-Point Ray (F-Ray):	Ray passes through the focal point, F	Ray is parallel to the principal axis
Midpoint Ray (M-Ray):	Ray passes through the midpoint of the lens	

Table 11: Equations for Lenses		
Calculation	Equation	Comments
Thin-lens Equation:	$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$	$p=$ object distance, $q=$ image distance, and $f=$ focal length
Magnification:	$M=\frac{-q}{p}=\frac{h^{\prime}}{h}$	$M=$ magnification, $h^{\prime}=$ image height, and $h=$ object height

C. Other Optical Phenomena

- I can give an example of atmospheric refraction-ex. refracted light can produce mirages.
- I can give an example of dispersion-ex. rainbows are created by the dispersion of light in water droplets. Note that the sun has to be behind a person for the rainbow to be observed.
- I can identify types of lens aberration:
- Chromatic aberration-color fuzziness.
- Spherical aberration-optical fuzziness.

Chapter 17: Electric Forces and Fields

A. Electric Charge

- I can describe types of charges
- I can give examples of charge conservation
- I understand charge quantization; $\mathrm{e}=1.60 \times 10^{-19} \mathrm{C}$; recall that you can use this as a conversion factor with units $1.60 \times 10^{-19} \mathrm{C} /$ electron, for example.
- I can give everyday examples of charge transfer:

1. Charging through contact (walking across a carpet)
2. Charging by induction (electroscope demonstrations, balloon demonstration)

- I can distinguish between conductors, insulators, and semiconductors
B. Electric Force
- I can compare and contrast electric force with gravitational force of attraction:

1. Both are field forces
2. Both are inverse square laws; recall that $\mathrm{F}_{\mathrm{g}}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$ where $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
3. Electric force is significantly stronger than gravitational force
4. Electric force can be attractive or repulsive whereas gravitational force is only attractive.

- I can calculate electric force using Coulomb's Law: $\mathrm{F}_{\text {electric }}=\mathrm{k}_{\mathrm{c}} \mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$ where $\mathrm{k}_{\mathrm{c}}=8.99 \times 10^{9}$ $\mathrm{Nm}^{2} / \mathrm{C}^{2}=$ Coulomb Constant
C. Electric Field
- I understand that electric field strength depends on charge and distance
- I understand that electric fields can be represented by electric field lines (analogous to lines representing altitude on a geographical contour map for hiking)
- I can clearly describe why a person's hair stands on end when the person is insulated from the ground and he or she touches a van de Graaff generator. (Recall that a van de Graaff generator collects electric charge.)

Physics Fourth Marking Period Review Sheet, Page 8

Chapter 19: Current and Resistance

A. Electric Current

- I understand that current is the rate of charge movement, and I can calculate current using $\mathrm{I}=\Delta \mathrm{Q} / \Delta \mathrm{t}$ where current, I , is in Amps (A), charge passing through a given area, $\Delta \mathrm{Q}$, is in Coulombs (C), and change in time, $\Delta \mathrm{t}$, is in seconds (s).
- I understand conventional current is defined in terms of positive charge movement.
- I understand that drift velocity, which is the net velocity of charge carriers, is relatively small: 68 min . on average for an electron to travel 1.0 m .
- I can compare and contrast two current sources:

1. Batteries-change chemical energy into electrical energy
2. Generators-change mechanical energy into electrical energy

- I can describe two current types:

1. Direct current (DC)
2. Alternating current (AC)
B. Resistance

- I can explain how these four factors affect resistance:

1. Length of conductor
2. Cross-sectional area of conductor
3. Conductor material
4. Temperature

- I am an expert at using Ohm's Law: $\Delta \mathrm{V}=\mathrm{IR}$, where potential difference, $\Delta \mathrm{V}$, is in Volts (V), current, I, is in Amps (A), and resistance, R, is in Ohms (Ω).
- I can distinguish between ohmic and nonohmic materials:

1. Ohmic materials have a constant resistance over a wide range of potential differences (ex. most metals)
2. Nonohmic materials do not have a constant resistance over a wide range of potential differences. (ex. diodes, which are analogous to check valves in plumbing)

- I understand that resistors can be used to control the amount of current in a conductor.
- I understand that salt water and perspiration lower the body's resistance.
C. Electric Power
- I understand that electric power, P , is the rate at which electrical energy is converted to other forms of energy, and I can calculate power using $\mathrm{P}=\mathrm{I} \Delta \mathrm{V}$ where power, P , is in Watts (W), current, I , is in Amps (A), and potential difference, $\Delta \mathrm{V}$, is in Volts (V).
- By combining the power formula, $\mathrm{P}=\mathrm{I} \Delta \mathrm{V}$, with Ohm's law, $\Delta \mathrm{V}=\mathrm{IR}$, I can derive two additional ways to calculate power: $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$ and $\mathrm{P}=(\Delta \mathrm{V})^{2} / \mathrm{R}$.
- I understand that the amount of heat and light given off by a light bulb is related to the electric power rating. Most light bulbs are labeled with a power rating in Watts.
- By using a three-step method ((1) get power, (2) get kWh , (3) get cost), I can determine the electrical power cost to operate an electrical appliance for a given length of time.
- I understand that electric companies measure energy consumed in kilowatt hours $\left(1 \mathrm{kWh}=3.6 \times 10^{6} \mathrm{~J}\right)$
- I understand that electrical energy is transferred at high potential differences (high voltages) to minimize energy loss.

Physics Fourth Marking Period Review Sheet, Page 9

Chapter 20: Circuits and Circuit Elements

A. Schematic Diagrams

- I can read, understand, and draw simple schematic diagrams.
- I can interpret the symbols for a wire, resistor, bulb, plug, battery, open and closed switch, and capacitor.
- I can identify open circuits, closed circuits, and short circuits
- I understand that short circuits occur when there is little or no resistance to the movement of charges; the increase in current may cause the wire to overheat and start a fire.
- When a light bulb is screwed in, I understand that charges can enter through the base, move along the wire to the filament, and exit the bulb through the threads.
- I understand that light bulbs emit light because the filament is a resistor, which converts some of its electrical energy to light energy and heat energy.
- I understand that the electromotive force (emf) is the source of a circuit's potential difference (voltage) and electrical energy.
- I understand that batteries have a small internal resistance, which is usually ignored in problem solving.
B. Series and Parallel Circuits
- I can compare and contrast series and parallel circuits using Table 12, and I can calculate equivalent resistance, R_{eq}, using the equations in Table 12.
- I can use Ohm's law on a large scale to calculate information about an entire circuit: $\Delta V_{\text {battery }}=I_{\text {circuit }} R_{\text {eq }}$ where $\Delta V_{\text {battery }}$ is the voltage of the battery, $I_{\text {circuit }}$ is the current in the circuit, and R_{eq} is the equivalent resistance.
- I can use Ohm's law on a small scale to calculate information about a particular resistor: $\Delta \mathrm{V}=\mathrm{IR}$ where $\Delta \mathrm{V}$ is the voltage for the resistor, I is the current through the resistor, and R is the resistance of the resistor.

Table 12: Series and Parallel Circuits		
Quantity	Series Circuit	Parallel Circuit
Schematic Diagram:		
Current, $I:$ (Amps,)	$I=I_{1}=I_{2}=I_{3}=\ldots$	$I_{\text {total }}=I_{1}+I_{2}+I_{3}+\ldots$
Potential Difference, $\Delta V:$ (Voltage, V)	$V_{\text {total }}=V_{1}+V_{2}+V_{3}+\ldots$	$V=V_{1}=V_{2}=V_{3}=\ldots$
Equivalent Resistance, $R_{e q}:$ (Ohms, $\boldsymbol{\Omega}$)	$R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots$	$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots$

Equations Available on Physics Fourth Marking Period Test

$$
\begin{array}{lll}
c=f \lambda & \frac{1}{p}+\frac{1}{q}=\frac{1}{f} & M=\frac{-q}{p}=\frac{h^{\prime}}{h} \\
n=\frac{c}{v} & n_{i}\left(\sin \theta_{i}\right)=n_{r}\left(\sin \theta_{r}\right) & \sin \theta_{C}=\frac{n_{r}}{n_{i}} \text { for } n_{i}>n_{r} \\
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & F_{\text {Gravitational }}=G \frac{m_{1} m_{2}}{r^{2}} & G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} \\
e=1.60 \times 10^{-19} \mathrm{C} & F_{\text {Electric }}=k_{C} \frac{q_{1} q_{2}}{r^{2}} & k_{C}=8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2} \\
R_{e q}=R_{1}+R_{2}+R_{3}+\ldots & I=\frac{\Delta Q}{\Delta t} & \Delta V=I R \\
P=I \Delta V & \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots & \Delta V_{\text {Battery }}=I_{\text {Circuit }} R_{e q} \\
& P=I^{2} R & P=\frac{(\Delta V)^{2}}{R}
\end{array}
$$

Cost calculations: (1) get power
(2) get kilowatt-hours (3) get cost

- This list of equations will be provided on the test.
- You are not allowed to use note cards, review sheets, textbooks, or any other aids during the test.
- You may use a calculator. However, you are not allowed to use any other electronic devices (i Pods, i-Phones, smart phones, netbooks, laptop computers etc.) until the last person is finished with the test.
- Calculator sharing is not allowed.
- It is to your advantage to check your work.
- All test materials including scratch paper must be returned at the end of the test.

